The Trigonographer’s Spotlight
- Angle Sum and Difference for Sine and Cosine
\( \begin{align}
\sin(\alpha\pm\beta) &= \sin\alpha \cos\beta \pm \cos\alpha \sin\beta \\
\cos(\alpha\pm\beta) &= \cos\alpha \cos\beta \mp \sin\alpha \sin\beta
\end{align}\) - Combining Sine and Cosine
\(
\begin{align}
p \sin\theta + q \cos\theta &= r \sin\left( \theta + \phi \right) \\
p \cos\theta \,- q \sin\theta &= r \cos\left( \theta + \phi \right)
\end{align}\) - Exponential Forms of Hyperbolic Sine and Cosine
\(
\begin{align}
2 \sinh u &= e^{u} -\,e^{-u} \\
2 \cosh u &= e^{u} + e^{-u}
\end{align}\)
- COEXIST
- Half-Angle Identities in a Triangle
- The Inscribed Angle Theorem without the Triangle Angle-Sum Theorem
- Pi by Ramanujan
- The Law of Cosines
- A Divided Angle Tangent Inequality
- Inradius and Circumradius of a Right Triangle
- Chicken-Taught Pi
- Euclid + Cupid
- Happy Hallowe’en
- Trigonography Challenge: Series for Cotangent and Cosecant
- Involute Zig-Zag: Power Series for Secant and Tangent
- Chaikovsky’s Involute Pinwheel: Power Series for Sine and Cosine
- Angles and Tangents in Arithmetic Progression
- Two Circles Puzzle
- Exponential Forms of Hyperbolic Sine and Cosine
- Special Angles are Golden, II
- Sum of Sines, Sum of Cosines, Sum of Angles
- (Nearly-)Pi from Square Roots
- Special Angles are Golden
- Compound Hypotenuse
- Trig Sums with Angles in Arithmetic Progression
- Three Squares Puzzle
- A Ratio of Trig Sums
- Cartographer’s Tangent Formulas
- An Arctangent Identity
- A Reciprocal Sum Identity
- Combining Sine and Cosine
- Angle Sum and Difference for Sine and Cosine
- Pythagoras in Disguise
- Half-Angle Differences for Triangles
- A Cotangent Identity for Triangles